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FLOW AND HEAT TRANSFER OF FINELY DISPERSED 

TURBULENT FLOWS IN CHANNELS 

I. V. Derevich, V. M. Eroshenko, 
and L. I. Zaichik 

UDC 532.529 

Equations for the second moments of the velocity and temperature fluctuations 
are used to study the effect of particles on the rate of turbulent momentum 
and heat transfer in the flow of a gas suspension in circular pipes. 

It is currently most promising to describe the hydrodynamics and heat transfer of tur- 
bulent disperse flows by using the system of equations for the second one-point moments of 
the velocity and temperature fluctuations of the dispersion medium with allowance for the 
presence of the particles [1-4]. The authors of [5-8] used this system to analyze the effect 
of the disperse phase on the fluctuation and mean flow and heat-transfer characteristics 
of dust-laden flows in channels for particles for which the dynamic and thermal relaxation 
times were of the same order as the integral turbulence scale. The present investigation, 
being a continuation of [5-8], studies the manner in which the rate of turbulent transport 
is affected by finer particles, having a dynamic relaxation time which is one order less 
than the microscopic time scale of the turbulence. We will also present results of calcula- 
tions of the hydrodynamics and heat transfer of dust-laden flows within a broad range of 
particle dimensions. 

i. We are examining the turbulent flow of a gas with spherical solid particles (P2 ~ Px)- 
The system of equations of motion and heat transfer of the gas in the case of a small Volume 
content of particles has the form: 

_ _  02Ui OU~ _}_ U~ OU~ _ 1 OP + ~ (1 )  
Ot Oxh p~ Ox~ Ox~Oxk 

N dV~ (t) 
o~ ~ ~]6(x- -Rp( t ) )  , 

Ol ~X dt p=l 

OOa + Uk 001 OZ01 P2C~ ~ ~ dOv(t-------~) (2) 
Ot Oxh - ~ OxhOx~ 9ac~ ~g p=~= 8(X--Rp(t)) dt  ' 

dVp___.i = 1 (U~ (Rp (t), t) - -  Vpi (t)), dRP-----L = Vpi, ( 3 )  
dt ~ dt 

dOp 1 
(e~ (~p (t), t) - -  o~ (0). (4)  

dt ~o 

If we change over from a Lagrangian description of the individual particles (3), (4) to 
an Eulerian description of the solid phase [8], average Eqs. (i) and (2) and the equations 
obtrained for the solid phase in the case of turbulent flow, and add up the equations for 
the individual phases, we obtain the equations of motion and heat transfer for the disperse 
flow as a whole: 
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o_ < u~____~> + < G > o < u~____~> + < c > ~o~ 
Ot Oxh p~ 

_ 1 0 ( P )  q O ( O(U~)  ) 
Oxh p~ 

a<e~____~>.+<u~>a<e~___~> + < c >  c ~  (a<eo> + < G >  a<~.~> 
Ot cgx~ c~p~ Ot Ox~ 

O [ 3 ( 0 1 ) O X h  Z Ox~ { O l u ~ ) - -  c2P-----~ <C)  (O~v~) l 

( o i v ~ . ~ + < v k >  o<vi> ) _  
Ot Oxh 

(5) 

( 6 )  

It is evident from Eqs. (5) and (6) that particles brought into pulsative motion by the 
carrier phase increase the rate of turbulent transfer of momentum and heat. 

2. To close the averaged equations of motion and heat transfer (5) and (6), it is 
necessary to obtain expressions for the second one-point moments of the velocity and temper- 
ature fluctuations of the carrier and solid phases. The equations for the carrier phase, 
with allowance for the presence of the particles, coincide with the corresponding equations 
for a pure gas [9] except for the additive terms which account for phase interaction. The 
terms describing the effect of the particles in the equations for the second moments ~f the 
velocity fluctuations, the correlations of velocity and temperature fluctuations, and the 
square of the temperature fluctuations of the carrier phase, respectively, have the form: 

e~ Pe 1 [2( C> ( uiu 7> --  / ~ N Pl zu \ O N E 5 (x - -  Rp (t)) [Vpi (t) uj (x, t ) + V v i ( t ) u i ( x  ' t ) ]>} ,  (7) 
P=I  

d~=.v~ J<c>[C~ <o~u~> ~ <o~.~>j / ~  X' 6 (x . -~( t ) )  co e~(t) u~(x,t) + 

(8)  
N 

d= 2 J<c><01>  6(x__Rp(o) ep(001(x,@}. 
re plcl [ \ f{v p=1 

The velocity and temperature of the particles are found from Eqs. (3) and (4) and, 

(9) 

a t  
To they have the form: 

t 

VPi(t)~- l sf dsexp , ~ s 1 u i ( R p ( S ) ,  / (lO) 

Or( t )=  l'co t ( t - - s )  j" ds exp O~ (Rv (s), s). 
o To , (11) 

t ~ Tu, 

Isolating the average and fluctuation components of velocity and temperature for the 
carrier phase in Eqs. (i0) and (ii) and using the identity 

t t t s dx (s) Oq~ (x (s), $1) j" ~p (x (s), s) ds = .[ �9 dsrp (x (t), s) - -  ( ds f dst 
"J "" ds Ox O 0 0 0 

and in addition considering that the scales of the change in the mean quantities are con- 
siderably greater than the scales of change in the fluctuation velocities, we obtain the 
following expressions for the terms entering into (7)-(9): 

< 8 ( x - -  ~p (t)) Vp~ (t) ~j (x, t) > = < ~ (x -- Rv (0) uj (x, t) > • 
t 

\ OXh J J o 

Xexp - - - -  < 5 (x --  R; (0) 5(xl--Rp(s))u~(xl,  s).~(x, t)> • 
' [ u  J 

, ( , _ s )  • O <Ox_____~U~ ) if_ T,---~I .I dxl b f ds exp ~-- . < 6 (x --  R; (t)) • 

(12) 

• ~ (x, - -  1% (s)) u~ (x~, s) uj (x, t) >, 
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~ 6 (x -- r~;, (0) o .  (t) . ;  (x, 

x ((O~>--'~o(Vh> O 

[ x exp . . . .  exp 
�9 "I7 u , 

- -  R~ (s)) .~ (x~, s) u; (x, l) ) 

/ t - - s  
x ~'xp I - -  - - -  

0 ~ = ~ 6 (x - -  R;) (t)) . ;  (x, t) > x 

<01) ] 1 t 
&,~ / ~ - - ' % ~ d x ~ t ' d ~ x  

0 

[ < 6 (x --- r , ,  (0) 6 (x~ - 

c? ~ @t ~ 1 t 
+ j ' d x t . i ' &  • 

Oxh "Co o 

)~  ( x - -  ~ ,  (0) ( x ~ - -  R~,(s)) • 6 5 

• 0 ; ( x x ,  "'' "" , 

(13) 

( ~ (x - -  Rv (t)) Vv~ (t) G (x, t) ? = ( 5 (x - -  ~p (t)) o~ (x, t) ) x 

x ( ( U ~ > - - % < G >  O<U~>.)-- 1--~-Iclx~ icis(t-s) x 
' Oxh "~u " '0 

• exp - -  ~ ( 6 (x - -  R~ (t)) 6 (x~ - -  Rv (s)) • 
,l" u 

t 
X U~ (Xl, S) 01(X, t) > a <  ui.___~> _~_, 1 ~ dx I ~ ds X 

axk T u o 

• exp { 6 (x - -  Rp (t)) 5 (x~ - -  Rv (s)) • 
Tu 

x ui (x~, s) O~ (x, t) ), 

(14) 

X - -  

< 6 (x - -  l~p (0) Op (t) o~ (x, t) = ( 6 (x - -  ~p (0) x 

" OXh , 

1 ; dx~ [ ds exp -- -- -- exp -- ~ • 
'12u - -  %0 ~ "I: u %0 , 

X ( ~ (X -- Rp (0) ~ (xl -- Rp (s)) 01 (Xl, s) 01 (x, ~) > 

O(@~>Oxh -k 1"% fjdxl (dsexp(  t - - s ) < 6 ( X _ R p ( t ) )  
b 370 

• a ( x ~ - - ~ p ( s ) ) 0 ~ ( x 3 ,  s)  0 ~ ( x ,  t ) > .  

x 

(15) 

It is evident from Eqs. (12)-(15) that the rate of phase interaction is determined by 
the Lagrangian correlations of the velocity and temperature fluctuations of the gas phase 
calculated from the trajectory of the particles. The first terms in the right sides of 
(12)-(15) are proportional to the gradient of the mean concentration of the discrete phase. 
To determine the remaining terms, we can examine the Lagrangian correlation of the velocity 
fluctuations of the gas phase according to the particle trajectory: 

< F~j (x, x6 t, s) > = < ~ (x - -  Rv (0) 5 (x~ - -  Rp (s)) [.~ (x, s) uj (x, t) + uj (x~, s) u~ (x, t)l. (16) 
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In a nonuniform turbulent flow, the function <Fij> depends not only on the relative 
variables z = x - x I and ~ = t -s ~O- the scales of which coincide with the scales of 
change of the fluctuation variables - but it also depends on the variables x 0 = (x + xi)/2 
and t o = (t + s)/2, characterizing the average change of <Fij> in the flow. 

Considering that the scales of the variables x 0 and t o appreciably exceed the scales 
of the variables z and $, we put: 

< Fi j (x ,  xl; t, s)> = < Fij(Xo, to; z, s)> = 

= ( F , j  x--~-, -~- ,  z, s ~ < F , j (x ,  t; z, ~)> ---{-  (17) 

• u[O(F'j(x'att; z, ~)) +< aF,j(X,axht; z, ~)az~#~ )]a " 
The first term in the square brackets describes the mean change over time in the rate of tur- 
bulent pulsations of the carrier phase, while the second term describes convective trans- 
fer and turbulent diffusion of the pulsations in the nonuniform flow. For the Lagrangian 
correlation <Fij(x , t; z, ~)>, we determine the macroscopic integral time scale TEp from 
the following relation: 

, f d z . f d~ (F  u(x, t; z, ~ ) )  = 2 T E v ( n ~ ( x ,  t ) )  ( u ~ u j ) .  
o 

The time macroscale TEp differs from the integral time scale of turbulence T E - equal 
to the lifetime of energy-containing moles - due to the averaged and fluctuational slip of 
the phases. Ignoring the averaged phase slip and considering that the fluctuational phase 
slip does not lead to a substantial reduction in TEp [i], for simplicity we will henceforth 
assume that TEp = T E. 

Most of the turbulent energy of the flow lies in the energy-containing moles, the charac- 
teristic lifetime of which is on the order of the time macroscale of turbulence T E. At the 
same time, the dissipation of the pulsative energy is connected with high-frequency pulsa- 
tions, the period of these pulsations being on the order of the Taylor microscale T O . Mean- 
while, T O C T E for large Reynolds numbers [9]. Since particles having a dynamic relaxa- 
tion time greater than or of the same order as the integral turbulence scale do not react 
to small-scale pulsations having a lifetime much less than T E and since only energy-contain- 
ing moles are brought into pulsative motion, the Lagrangian correlation for them <Fij(x, t, 
z, $)> can be approximated by the step function 

a t  ~ > T E. 
As a result, we obtain the following for the integral terms in (12): 

oo 

T u , 

2 - -  ( F i j ( x ,  t; z, ~) > = 2 [ = ~ ( n 1 >  ( u ~ u j > ,  
' l :u  0 

(18) 

where ful = 1 --exp(--TE/Tu), fu2= I--(I+Te/T~)exp(--Te/~). The functions ful and fu2 deszribe 
the degree of entrainment of the particles in pulsative motion and coincide with the functions 
obtained earlier in [5]. 

The fine particles (T u ~ To) are completely entrained in the turbulent motion of the 
energy-containing moles of the carrier phase; here, effects connected with fluctuational 
slip of these moles and the solid phase can be ignored. Effects due to the participation 
of particles in the high-frequency small-scale motion of the carrier phase become impcrtant 
for particles with a relaxation time which is less than the Taylor microscale of turbulence. 
This fact leads in particular to an increase in turbulent dissipation in a dust-laden flow 
[i0]. In the case x u < To the upper limit in the integral terms in Eq. (12) is assumed to 
be equal to T O . Then taking into consideration the equality 8 < Fij (x, t; z, ~) >/8~ = 0 
at $ = 0 [ii] and considering that the range of the variable z is associated with the iner- 
tial interval, we will change over to a spectral representation for the equation of motion 
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of the carrier phase (i) and the expression of the Lagrangian correlation of fluctuation 
velocity (17). As a result, we find (for example) the following expression for the last term 
in (12) at ~u < T0 

ro ( ~ ': 
I f d z j ,  d S e x p ~ - - 7 5 )  <Fu(x ,  t; z, ~),== 

"Cu 0 

---- <hi> 1--exp --~ ~ l + ' ~ v k  a 
(19 )  

�9 ]} ~ [E~ (k) a < u >  + Es~ (k) a < u,___)_> 
(1 § %wkz) z Ox,, Oxu ' 

where Ei~(k) and vii(k) are the Fourier components of velocity and pressure fluctuations in 
the carrler phase, aetermined from the relations 

< u~ (x -4- y, t) u s (x, t) ) ---- j' dk exp (iky) E u (k), 

1 / O p ( x + y ,  t) u~(x, t) + O p ( x + y ,  t) u s(x, t) \ 
-= S dk exp (iky) ~u (k). \ Oxs Ox~ / 

Pl 

The integral term in (12) with gradients of averaged velocities is proportional to terms 
on the order of (xu/T0) = and is henceforth omitted. 

Thus, we have two representations for the integral terms in Eq. (12): expressions (18), 
valid at ~u ~ TE, and expression (19), for particles with ~u < To ~ TE" Considering that 
most of the energy of the pulsative motion is concentrated in large-scale eddies, compari- 
son of Eqs. (18) and (19) in the region T o ~ ~u ~ TE yields a closed expression for corre- 
lations of the particle velocities with fluctuations of gas velocity in (12) 

where 

Ju = < 8 (x 

= < 8 ( x -  1~ (t))us (x, t) > [ < u~ > ---r~ < vk > - -  

§ < 6 (x --  Rp (t)) u~ (x, t) > [ < wj > - -  ~ < Vh > 

+ < n1> [ 2f~1< u,u, > -- ~uf~( < u,uh > 

+ < usuk > a < U~ > + a < u~uj > ] _ % f ~  
Ox~ at , 

- -  Itp (t))[Vp~ (t) us (x, t) + V .  (t) u~ (x, t)] 
a< U~ 

c~x~ 

a< U s 

axh 

a < u j >  
+ 

Oxk 
a < u~u~uh ) 

Oxh 

dk (2"%'vkZEis (k) + Tu~zs (k)) ] fll 
J 

-]+ 
-- ]+ 

(20) 

\ %u ) T~ 

The first two terms in the right side of Eq. (20) are proportional to the gradient of 
the mean particle concentration. The terms in the brackets, except for the integral term, 
describe effects connected with entrainment of particles in the large-scale pulsations of 
the energy-containing moles and coincide with the terms obtained earlier in [5]. The in- 
tegral term in (20) describes effects connected with participation of the particles in 
small-scale turbulent motion. 

Let us examine a statistically uniform and steady turbulent flow. Summing over i = j 
in the approximation of constant particle concentration, we obtain the following from Eq. 
(20) 

(21) 
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It follows from (21) that Jii = 2 <n~><uiui>TE/~ u for particles with a relaxation time 
considerably greater than the integral scale of turbulence. This result coincides with the 
results obtained in [i, 2, 5]. For finer particles, T O < ~u ~ TE, we have 

Jii "~" 2 ( ( uiu i > --  dk Tuvk2Eu] ~ u v ~  / .(k)~ 

I t  should be noted tha t  2v~dkkaEii(k) = e, while the maximum of the expression kaEii(k)  
in the wave-number space l i e s  in the neighborhood k % 1/s n [9, 11] (s is  the Kolmogorov 
spatial scale of turbulence) and vs -2 = I/T , where T is the Kolmogorov time scale, T O > n n n 
TN. Then for particles with a relaxation time less than the microscale To, it follows from 
Eq. (21) that 

ju~2<uiu~> (1 ~u/T~ ) = 2 ( u~u~ > 1 
1 + ~u/Tn 1 + z~/T n (22) 

It is evident from Eq. (21) that to completely involve the particles in the turbulent 
motion of the carrier phase, the relaxation time of the particles must be less than the 
Kolmogorov time scale. 

Similarly, correlations of the particle velocity and temperature with fluctuation:~ of 
velocity and temperature of the carrier phase are expressed through one-point moments of 
the velocity and temperature fluctuations of the carrier phase. Having inserted the :r 
ing expressions into Eqs. (7)-(9), we write the system of equations for the second monents 
of the velocity and temperature fluctuations and for the square of the temperature fluctua- 
tions of the carrier phase in the steady turbulent flow of a gas with a constant particle 
concentration: 

[<Uh>-f-P---~z < C ) [ ' e < V h > ]  O < u ~ u ~ } p l  Oxe + ( 1 +  P--~z ( C > f . z ) p ~  / 

)< u~u~> 0,/U.,.) +<ujuk> 0 < U i )  + 1 +  O~ ( C ) f , ~  • 
Oxh. Oxh Pl 

;K / p  O(uiuju1~) = l_jc - 9e ( C ) g u l l [ \ _ _  / Oui 
Oxk 91 /k " 91 \ Oxj + (23) 

+ Ouj " / \ - - 2 v /  oui Ouj \ _ _ _ 1  (O<uip) + 
Ox~ ] /  \ Oxk Oxh / 91 Oxi 

_ _ ~ ]  02 <uiuj  ; po < uiuj ? .+. o < ujp ) + v  " 2 "- ( C > fu~ 
OXi .,] J O)ChOXl, 91 T E 

[ 
+ 

u,,>+ 2 p, ~c> f~+-~-fo~ <vh> - -  

l q--P"- ( C ) [u23 ( Oluh ) O ( Ut ) ( 
Pt , 8x~ + 1 + ........... \ plC1 

0 3 Olll i 
8xk 

§ 

C > f o @  X 

>< (u#n> 0(@1~)-k'[ 1+  1 - ~ O x  2 P~P---Z-2 ( C ) ( f ~ a 4  - \  C2c~ [~ I ,  

O < O~u~uh > ~ - -  l - t - - < C >  g~,~ + Co ' 

ap \ + ~ / 6~f~ 02ul 
• <0~ Ox~ / \ OxkOx~ 8xkOxk / 

Pl ,, ci T e 

X 

(24) 
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[(Uh)_ ~ ~)ICIOZC2 (C)[og(Vh)] 0 ( O~ )Oxh ~_ ( l _ji- 

+ 9zc2 [ou2<C>)<Ozun> O < O x )  + . ( 1 +  P~c~ <C)feu3)  
plCl OXh 91C1 

• Oxh -- % OxkOxh . 

.// 001 \2 
p~c~ Te ' 

X 

(25) 

where 

gul = [ i - -  exp (--To/~)]/(1 +x~/T~), go1 = [ 1--exp(-- To/~o)]/(1 E- Pr~o/TQ, 
[Ou2= 1 .  [exp (-- 1 /~ )  ~ - -  exp (--  1/~o) ~o1(~--~o)  -z, [o2= 1 - -  (1 q- 1/~o) • 
X exp (--  11~o), fu~ = exp (--  l lQ~) /~ ,  [o~ = exp (--  l/Qo)/~o. 

It can be seen from Eqs. (23)-(25) that the participation of the particles in pulsative 
motion leads to a change in the terms describing convective transfer, turbulent diffusion, 
and the generation of turbulent pulsations, as well as the terms describing turbulent dissi- 
pation and exchange interaction. Also, new terms appear. These terms account for the addi- 
tional dissipation of pulsations of the gas due to fluctuational slip of energy-containing 
moles of the solid and carrier phases; similar dissipative terms (with somewhat different 
expressions for fu4 and f84) were obtained earlier in [i, 2]. The character of the effect 
of the discrete phase on the rate of pulsative motion of the carrier phase is determined 
by the degree of involvement of the particles in the pulsative motion. Highly inertial par- 
ticles (~u, ~0 ~ TE) do not have a significant effect on the fluctuation characteristics of 
the carrier flow, and for them the functions f and g approach zero. Particles having a 
relaxation time on the order of the time macroscale of turbulence (~u, ~8 % TE, gul, g01 ~ i, 
the functions f % i) participate mainly in the turbulent motion of the energy-containing 
moles; here, on the one hand, the participation of particles in turbulent motion leads to 
an increase in the generation of fluctuation energy of the flow, while on the other hand 
the turbulent energy of the carrier phase is expended on entraining the disperse phase in 
pulsative motion. The difference between the additional generation of turbulence due to 
averaged motion and the additional dissipation due to fluctuational slip of the phase may 
lead to both an increase and a decrease in the rate of pulsative motion of a carrier phase 
with particles (~u, ~0 ~ TE) [5, 6]. For fine particles with ~u, ~8 % To, the additional 
dissipation due to fluctuational slip of the phases approaches zero (fu~, f@4 + 0 at ~u, 
~@ + 0). However, in connection with the participation of particles in small-scale motion 
(gul, g@1% i), there is an increase in their contribution to turbulent dissipation and ex- 
change interaction. It should be noted that for particles with ~u, ~0 ~ T D, Eqs. (23) and 
(25) coincide with the equations for the intensity of velocity and temperature fluctuations 
of a one-phase turbulent flow in the case of high turbulent Reynolds numbers - when molec- 
ular transport can be ignored. 

The second moments of the velocity and temperature fluctuations of the disperse phase 
in Eqs. (5) and (6) describe momentum and heat transfer resulting from entrainment of par- 
ticles in the turbulent motion of the energy-containing moles. Expressions were found in 
[5, 6] for the second moments of velocity and temperature fluctuations of the particles in 
terms of the moments of the velocity and temperature fluctuations of the carrier phase. 

3. To describe the dissipative and exchange terms in Eqs. (23)-(25), we use the approxi- 
mate hypotheses of Rotta [12] and Monin-Kolovandin [13, 14]. Using the balance equations 
for the mean momentum and heat of a gas-suspension (5), (6), the equations for the energy 
of pulsative motion, and the square of the temperature fluctuations of the carrier phase 
(23), (25), we calculated the hydrodynamics and heat transfer for the steady turbulent mo- 
tion of a disperse flow with a constant particle concentration in a circular pipe. The ex- 
pressions for the eddy viscosity coefficient and diffusivity are found from Eqs. (23) and 
(24) in a nondiffusive approximation. The time macro- and microscales T E and T o of turbu- 
lence are determined as in [8]. 
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Fig. 1 Fig. 2 
Fig. i. Effect of particles on the intensity of velocity fluctuations 
(a) and temperature fluctuations (b) (Re = 5.3.104): a: i) <@> = 0; 2) 
<@> = 5; R/a = 30,000; 3) 5; 5000; b: I) <@> = 0; 2) <@> = 5; c2/c ~ = 
0.5; R/a = 30,000; 3) 5; 2; 30,000; 4) 5; 0.5; 50,000; 5) 5; 2; 5000. 

Fig. 2. Comparison of experimental [15] and theoretical values of the 
drag of a gas suspension flowing in a circular pipe (Re = 5.3"i04): i) 
R/a = 5000; 2) 3400; 3) 1700. 

The completed calculations showed a reduction in the gradients of the mean velocity and 
temperature in the core of the disperse flow compared to a one-phase flow. This result is 
consistent with the experimental data in [15, 16]. As a consequence of the reduction in 
the gradients, there is also a reduction in the rate of generation of pulsations of the 
carrier phase in the flow core and an increase in the generation of pulsations near tile wall 
of the pipe. Low-inertia particles (~u ~ To) entrained in the small-scale pulsative motion 
increase turbulent dissipation, which in turn, reduces the rate of pulsative motion of the 
carrier phase in the core. In the neighborhood of the wall, there is an increase in ~he 
rate of pulsations of the carrier phase due to the additional generation of turbulent energy 
(curves i and 2 in Fig. la). An increase in particle inertia is accompanied by a reduc- 
tion in the contribution of particles to turbulent dissipation. For particles with %s ~ TE, 
the reduction in the turbulent pulsations of the carrier phase is caused by fluctuational 
slip of the energy-containing moles of the carrier and disperse phases (curve 3 in Fig. i). 
The reduction in the intensity of turbulent pulsations due to the work done by the flow in 
entraining particles with ~u % TE into pulsative motion is less than the reduction in the 
turbulence level due to the increase in turbulent dissipation for low-inertia particl~s 
(max fu% < i). This leads to a situation whereby the level of pulsations of the carrier 
phase in the flow core for particles with ~u % TE is higher than the level in the flow with 
particles having a relaxation time on the order of T o . Figure 2 compares theoretical and 
experimental data [15] on the drag of a dust-laden flow in a circular pipe. The grea~er 
drag of the disperse flow compared to the o~e-phase flow is attributable to an increase in 
momentum transfer resulting from entrainment of particles in the pulsative motion of ~nergy- 
containing moles. 

The structure of the temperature fluctuations in a gas suspension depends both on the 
ratio of the dynamic and thermal relaxation times of the particles to the time scale r 
turbulence and on the ratio of the thermophysical properties of the particle material and 
carrier phase (Fig. 3). The greater the participation of the particles in the pulsatJve 
motion of the carrier phase and the greater the heat capacity of the particle materia]s, the 
smaller the gradient of mean velocity in the flow core. A reduction in the temperatuze gra- 
dient causes a reduction in the generation of turbulent pulsations of temperature in the 
core and an increase in pulsations near the channel walls. Low-inertia particles (m u % T o ) 
lead at c2/c i > 1 to a reduction in the intensity of gas temperature fluctuations in the 
core compared to a one-phase flow; at c2/c I < I, there is an increase in fluctuations of the 
temperature of the carrier phase (curves i, 2, and 3 in Fig. ib). The more inertial par- 
ticles (~u % TE) cause a reduction in gas temperature fluctuations due to fluctuational 
phase temperature slip (Fig. Ib, curves 4 and 5). It should be noted that an increase in 
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Fig. 3. Effect of the ratio of the heat capacities of the materials 
of the disperse and fluid phases on the Nusselt number of a disperse 
turbulent flow (Re = 3"104; Pr = 0.7; <r = 5): i) R/a = 5000; 2) 
3000; 3) 2000. 

Fig. 4. Comparison of experimental [18] and theoretical values of 
the Nusselt number of a gas suspension flowing in circular pipes: I) 
Re = i04; R/a = 2500; 2) 1.2-104; ii00; 3) 1.35.104; 600; 4) 1.5.104; 
200. 

the dynamic relaxation parameter of the particles is accompanied by a reduction in the effect 
of the thermophysical properties of the disperse phase on the intensity of turbulent heat 
transfer. 

Figure 4 compares the results of calculation of the Nusselt number of a gas suspension 
with experimental data [18]. As in the case of hydrodynamics, an increase in the rate of 
heat transfer by the disperse flow involves the entrainment of particles in pulsative motion. 

Thus, we have proposed a method of calculating hydrodynamics and heat transfer for dis- 
perse turbulent flows in channels within a fairly broad range of dimensions, disperse-par- 
ticle concentrations, and ratios of the thermophysical properties of the particle material 
and carrier gas. 

NOTATION 

Ui(x , t), Vi(x, t), actual velocities of the fluid and disperse phases; 81(x, t), 82 
(x, t), actual temperatures of the fluid and disperse phases; Vpi(t), 0p(t), Rpi(t), velo- 
city, temperature, and coordinate of the p-th particle; m, volume of the p-th particle; ~N, 
volume of the flow containing the N-th particle; ~, X, molecular viscosity and diffusivity 
of the carrier gas; ~u = (2p2a2)/(gPl ~), dynamic relaxation time of the particles; T8 = 
(p2c=a2)/(3plcix), thermal relaxation time of the particles; <C(x, t)>, mean volume concen- 
tration of the solid phase; 6(x), three-dimensional Dirac function; E = (<Ux2> + <Uy2> + 
<UzZ>)/2, fluctuation energy of the gas; <n1(x, t)>, numerical concentration of one parti- 
cle; Pz, P2, densities of the material of the fluid and solid phases; k, wave vector; e, 
turbulent dissipation of the velocity fluctuations; T D = (~/E) 112, Kolmogorov time scale; 
s = (~a/e)114" Kolmogorov space scale; ~u = ~u/TE, ~8 = ~8/TE, parameters of the dynamic 
and thermal inertia of the particles; Pr = ~/X; ReE = LEZI2/9, turbulent Reynolds numbers; 
L, spatial integral scale of turbulence; R, pipe radius; Re = 2RUm/~, Reynolds number of 
the flow; Um, mean mass flow velocity; @m, mean mass flow temperature; y = y/R; y, distance 
reckoned from the channel wall; t0, ~, drag of one- and two-phase flows; Nu 0, Nu, Nusselt 
numbers of one- and two-phase flows; <r = p2/p~<C>. 
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VORTEX FLOWS WITH SUSPENDED SEPARATION REGIONS AND 

LONG-RANGE UNTWISTED CENTRAL JETS 

G. N. Abramovich and R. S. Trofimov UDC 532~517.4 

A study is made of possible physicoaerodynamic configurations of vortical flow 
with suspended separation regions and untwisted central jets. Such flows are 
encountered in power plants (combustion chambers, heat exchangers, chemical re- 
actors, etc.) and in nature (tornadoes). 

Special vortical flows with suspended separation regions and long-range untwisted jets 
occur in power plants - such as in certain types of heat exchangers, separators, high-speed 
combustion chambers, and chemical reactors - and in nature. The development of a theory of 
such flows needs to be backed up by qualitative experimental studies of the corresponding 
initial aerodynamic schemes. 

This article is an attempt to describe the basic configurations of several flows of this 
type. The configurations may be useful in constructing methods of theoretical calcula~tion. 

I. Structure of a Flow Formed by Coaxial Cocurrent Twisted Jets. Coaxial cocurrert jets 
are employed in high-speed combustion chambers, chemical reactors, and mixers. Such ~lows 
have been studied in detail for the case of the absence of preliminary twisting. An 6xample 
is the study in [i] with reference to ejectors. 

Many investigations have focused on the case of a central twisted jet [2]. It was 
shown in [2] that a suspended separation region forms at the beginning of the central jet for 
sufficiently intense twisting. S. Yu. Krasheninnikov proposed a dimensionless criterion for 
the formation of this region. Quantitative studies have also been made of the case when 
both jets are twisted [3, 4]. However, no one has yet come up with a clear scheme for the 
formation of suspended separation regions in flows of this type. Nonetheless, suspended 
separation regions are necessary in high-speed combustion chambers to stabilize the flame 
and organize a stable diffusion front for the flame. 

There are four cases in which suspended separation regions can be formed: I) the jets 
are twisted in opposite directions; 2) the jets are twisted in one direction; 3) only one 
jet is twisted; 4) neither jet is twisted. 

The translational velocities in jets 1 and 2 (Fig. i) are usually different (Ula ~ U2a). 
~e presence of twisting is connected with a reduction in pressure toward the axis of the 
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